Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.808
Filtrar
1.
Small ; 19(4): e2204781, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36444515

RESUMO

Many different types of inorganic materials are processed into nano/microparticles for medical utilization. The impact of selected key characteristics of these particles, including size, shape, and surface chemistries, on biological systems, is frequently studied in clinical contexts. However, one of the most important basic characteristics of these particles, their density, is yet to be investigated. When the particles are designed for drug delivery, highly mobile macrophages are the major participants in cellular levels that process them in vivo. As such, it is essential to understand the impact of particles' densities on the mobility of macrophages. Here, inorganic particles with different densities are applied, and their interactions with macrophages studied. A set of these particles are incubated with the macrophages and the outcomes are explored by optical microscopy. This microscopic view provides the understanding of the mechanistic interactions between particles of different densities and macrophages to conclude that the particles' density can affect the migratory behaviors of macrophages: the higher the density of particles engulfed inside the macrophages, the less mobile the macrophages become. This work is a strong reminder that the density of particles cannot be neglected when they are designed to be utilized in biological applications.


Assuntos
Macrófagos , Humanos , Tamanho da Partícula , Macrófagos/ultraestrutura
2.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008904

RESUMO

Glucocorticoids delay fracture healing and induce osteoporosis. However, the mechanisms by which glucocorticoids delay bone repair have yet to be clarified. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. We herein investigated the roles of macrophages in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered with dexamethasone (Dex). Dex significantly decreased the number of F4/80-positive macrophages at the damaged site two days after femoral bone injury. It also attenuated bone injury-induced decreases in the number of hematopoietic stem cells in bone marrow in wild-type and PAI-1-deficient mice. PAI-1 deficiency significantly weakened Dex-induced decreases in macrophage number and macrophage colony-stimulating factor (M-CSF) mRNA levels at the damaged site two days after bone injury. It also significantly ameliorated the Dex-induced inhibition of macrophage phagocytosis at the damaged site. In conclusion, we herein demonstrated that Dex decreased the number of macrophages at the damaged site during early bone repair after femoral bone injury partly through PAI-1 and M-CSF in mice.


Assuntos
Regeneração Óssea , Glucocorticoides/farmacologia , Macrófagos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Animais , Medula Óssea/patologia , Regeneração Óssea/efeitos dos fármacos , Contagem de Células , Dexametasona/farmacologia , Feminino , Fêmur/efeitos dos fármacos , Fêmur/lesões , Fêmur/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Transtornos Hemorrágicos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/ultraestrutura , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/deficiência
3.
Biochem Biophys Res Commun ; 592: 74-80, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35032835

RESUMO

Crohn's disease is an inflammatory disease of the gut caused by a complex interplay among genetic, microbial, and environmental factors. The intestinal tract is constantly exposed to metals and other trace elements ingested as food. Synchrotron radiation-induced X-ray fluorescence spectroscopy and X-ray absorption fine structure analysis revealed the deposition of nickel particles within Crohn's disease tissue specimens. After nickel particle stimulation, THP-1 cells showed filopodia formation and autophagic vacuoles containing lipid bodies. Nickel particles precipitated colitis in mice bearing mutations of the IBD susceptibility protein A20/TNFAIP3. Nickel particles also exacerbated dextran sulfate sodium-induced colitis in mice harboring myeloid cell-specific Atg5 deficiency. These findings illustrate that nickel particle ingestion may worsen Crohn's disease by perturbing autophagic processes in the intestine, providing new insights into environmental factors in Crohn's disease pathogenesis.


Assuntos
Doença de Crohn/patologia , Progressão da Doença , Inflamação/patologia , Intestinos/patologia , Níquel/toxicidade , Animais , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Sulfato de Dextrana , Suscetibilidade a Doenças , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Macrófagos/ultraestrutura , Camundongos Endogâmicos C57BL , Células THP-1 , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
4.
Biol Reprod ; 106(1): 173-184, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34664639

RESUMO

Despite aquaporin water channels (AQPs) play a critical role in maintaining water homeostasis in female reproductive tract and prompt a gradual increase in water content in cervical edema as pregnancy progressed, their relationship with macrophage infiltration and collagen content in human cervical remodeling need to be further investigated. This is the first study to examine the expression and localization of AQP3, AQP4, AQP5, AQP8, and macrophages simultaneously in human cervical ripening. The immunoreactivity of these AQPs was 2.6 to 6-fold higher on gestational weeks 26 (GD26W) than that on GD6W and GD15W, but AQP4 expression on GD39W dropped a similar extent on GD15W, other AQPs continued to rise on GD39W. The AQP3, AQP4, and AQP5 intensity seemed more abundant in cervical stroma than in the perivascular area on GD26W; the distribution of AQP3, AQP5, and AQP8 in cervical stroma was equivalent to that in the perivascular area on GD39W. Macrophage numbers were 1.7-fold higher in subepithelium region and 3.0-fold higher in center area on GD26W than that on GD15W; such numbers remained elevated on GD39W. The electron micrographs showed that cervical extensibility increased significantly on GD26W and GD39W accompanied with increased macrophage infiltration, cervical water content, and much more space among collagen fibers. These findings suggest that the upregulation of AQPs expression in human cervix is closely related to enhanced macrophage infiltration during pregnancy; there may be a positive feedback mechanism between them to lead the increase of water content and the degradation of collagen.


Assuntos
Aquaporinas/análise , Colo do Útero/fisiologia , Macrófagos/fisiologia , Adolescente , Adulto , Aquaporina 3/análise , Aquaporina 4/análise , Aquaporina 5/análise , Aquaporinas/fisiologia , Contagem de Células , Maturidade Cervical/fisiologia , Colo do Útero/química , Colo do Útero/citologia , Colágeno/análise , Colágeno/metabolismo , Feminino , Idade Gestacional , Humanos , Macrófagos/ultraestrutura , Microscopia Eletrônica , Gravidez , Adulto Jovem
5.
Viruses ; 13(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34834984

RESUMO

We aimed to explore whether variants of SARS-CoV-2 (Chinese-derived strain (D614, lineage A), Italian strain PV10734 (D614G, lineage B.1.1) and Alpha strain (lineage B.1.1.7)) were able to infect monocytes (MN) and monocyte-derived macrophages (MDM) and whether these infected cells may, in turn, be vectors of infection. For this purpose, we designed an in vitro study following the evolution of MN and MDM infection at different time points in order to confirm whether these cells were permissive for SARS-CoV-2 replication. Finally, we investigated whether, regardless of viral replication, the persistent virus can be transferred to non-infected cells permissive for viral replication. Thus, we co-cultured the infected MN/MDM with permissive VERO E6 cells verifying the viral transmission. This is a further in vitro demonstration of the important role of MN and MDM in the dissemination of SARS-CoV-2 and evolution of the COVID-19 disease.


Assuntos
Macrófagos/virologia , Monócitos/virologia , SARS-CoV-2/fisiologia , Animais , Chlorocebus aethiops , Técnicas de Cocultura , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Macrófagos/ultraestrutura , Monócitos/ultraestrutura , Fosfoproteínas/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Internalização do Vírus , Replicação Viral
6.
Biomolecules ; 11(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680069

RESUMO

Mevalonate Kinase Deficiency (MKD) is a rare inborn disease belonging to the family of periodic fever syndromes. The MKD phenotype is characterized by systemic inflammation involving multiple organs, including the nervous system. Current anti-inflammatory approaches to MKD are only partially effective and do not act specifically on neural inflammation. According to the new emerging pharmacology trends, the repositioning of drugs from the indication for which they were originally intended to another one can make mechanistic-based medications easily available to treat rare diseases. According to this perspective, the squalene synthase inhibitor Lapaquistat (TAK-475), originally developed as a cholesterol-lowering drug, might find a new indication in MKD, by modulating the mevalonate cholesterol pathway, increasing the availability of anti-inflammatory isoprenoid intermediates. Using an in vitro model for MKD, we mimicked the blockade of the cholesterol pathway and evaluated the potential anti-inflammatory effect of Lapaquistat. The results obtained showed anti-inflammatory effects of Lapaquistat in association with a low blockade of the metabolic pathway, while this effect did not remain with a tighter blockade. On these bases, Lapaquistat could be configured as an effective treatment for MKD's mild forms, in which the residual enzymatic activity is only reduced and not almost completely absent as in the severe forms.


Assuntos
Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Deficiência de Mevalonato Quinase/enzimologia , Oxazepinas/uso terapêutico , Piperidinas/uso terapêutico , Alendronato/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Farnesil-Difosfato Farnesiltransferase/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Ácido Mevalônico/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Oxazepinas/farmacologia , Piperidinas/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
7.
J Neuropathol Exp Neurol ; 80(10): 975-996, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34553215

RESUMO

This study examined the roles of microglia and monocytes in myelin destruction in patients with early multiple sclerosis (MS). Twenty-two cases were studied; the clinical duration was <9 weeks in 10 cases. Twenty myeloid cell subtypes or categories were identified including 2 cell types not known previously to occur in demyelinating diseases. Commencing myelin breakdown in plaques and in perivascular and subpial tissues occurred in the immediate presence of infiltrating monocytes and was effected by a homogeneous population of IgG-positive Fc receptor-bearing early phagocytes interacting with abnormal myelin. Oligodendrocyte apoptosis was observed in intact myelinated tissue bordering areas of active demyelination. Capillaries in the cerebral cortex plugged by large numbers of monocytes were common in acute cases of MS and in a patient with a neuromyelitis optica variant and extreme systemic recruitment of monocytes. In an MS patient with progressive disease, microglial nodules centered on MHC-II-positive capillaries plugged by monocytes were present in the cerebral cortex. This constitutes a new gray matter lesion in MS.


Assuntos
Macrófagos/patologia , Microglia/patologia , Monócitos/patologia , Esclerose Múltipla/patologia , Adolescente , Adulto , Idoso , Doenças Desmielinizantes/patologia , Feminino , Humanos , Macrófagos/ultraestrutura , Masculino , Microglia/ultraestrutura , Pessoa de Meia-Idade , Monócitos/ultraestrutura , Adulto Jovem
8.
J Neuroinflammation ; 18(1): 209, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530852

RESUMO

BACKGROUND: Toll-like receptor 7 (TLR7) is an innate immune receptor that detects viral single-stranded RNA and triggers the production of proinflammatory cytokines and type 1 interferons in immune cells. TLR7 agonists also modulate sensory nerve function by increasing neuronal excitability, although studies are conflicting whether sensory neurons specifically express TLR7. This uncertainty has confounded the development of a mechanistic understanding of TLR7 function in nervous tissues. METHODS: TLR7 expression was tested using in situ hybridization with species-specific RNA probes in vagal and dorsal root sensory ganglia in wild-type and TLR7 knockout (KO) mice and in guinea pigs. Since TLR7 KO mice were generated by inserting an Escherichia coli lacZ gene in exon 3 of the mouse TLR7 gene, wild-type and TLR7 (KO) mouse vagal ganglia were also labeled for lacZ. In situ labeling was compared to immunohistochemistry using TLR7 antibody probes. The effects of influenza A infection on TLR7 expression in sensory ganglia and in the spleen were also assessed. RESULTS: In situ probes detected TLR7 in the spleen and in small support cells adjacent to sensory neurons in the dorsal root and vagal ganglia in wild-type mice and guinea pigs, but not in TLR7 KO mice. TLR7 was co-expressed with the macrophage marker Iba1 and the satellite glial cell marker GFAP, but not with the neuronal marker PGP9.5, indicating that TLR7 is not expressed by sensory nerves in either vagal or dorsal root ganglia in mice or guinea pigs. In contrast, TLR7 antibodies labeled small- and medium-sized neurons in wild-type and TLR7 KO mice in a TLR7-independent manner. Influenza A infection caused significant weight loss and upregulation of TLR7 in the spleens, but not in vagal ganglia, in mice. CONCLUSION: TLR7 is expressed by macrophages and satellite glial cells, but not neurons in sensory ganglia suggesting TLR7's neuromodulatory effects are mediated indirectly via activation of neuronally-associated support cells, not through activation of neurons directly. Our data also suggest TLR7's primary role in neuronal tissues is not related to antiviral immunity.


Assuntos
Gânglios Espinais/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/biossíntese , Neuroglia/metabolismo , Células Receptoras Sensoriais/metabolismo , Receptor 7 Toll-Like/biossíntese , Animais , Feminino , Gânglios Espinais/ultraestrutura , Expressão Gênica , Cobaias , Macrófagos/ultraestrutura , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Receptor 7 Toll-Like/genética
9.
Cell Death Dis ; 12(9): 815, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453041

RESUMO

Crohn's disease (CD) is an intestinal immune-dysfunctional disease. Extracellular vesicles (EVs) are membrane-enclosed particles full of functional molecules, e.g., nuclear acids. Recently, EVs have been shown to participate in the development of CD by realizing intercellular communication among intestinal cells. However, the role of EVs carrying double-strand DNA (dsDNA) shed from sites of intestinal inflammation in CD has not been investigated. Here we isolated EVs from the plasma or colon lavage of murine colitis and CD patients. The level of exosomal dsDNA, including mtDNA and nDNA, significantly increased in murine colitis and active human CD, and was positively correlated with the disease activity. Moreover, the activation of the STING pathway was verified in CD. EVs from the plasma of active human CD triggered STING activation in macrophages in vitro. EVs from LPS-damaged colon epithelial cells were also shown to raise inflammation in macrophages via activating the STING pathway, but the effect disappeared after the removal of exosomal dsDNA. These findings were further confirmed in STING-deficient mice and macrophages. STING deficiency significantly ameliorated colitis. Besides, potential therapeutic effects of GW4869, an inhibitor of EVs release were assessed. The application of GW4869 successfully ameliorated murine colitis by inhibiting STING activation. In conclusion, exosomal dsDNA was found to promote intestinal inflammation via activating the STING pathway in macrophages and act as a potential mechanistic biomarker and therapeutic target of CD.


Assuntos
Doença de Crohn/patologia , DNA/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Colite/patologia , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Enterócitos/efeitos dos fármacos , Enterócitos/patologia , Enterócitos/ultraestrutura , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Humanos , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Proteínas de Membrana/deficiência , Camundongos Knockout , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Nat Commun ; 12(1): 4838, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376698

RESUMO

Macropinosomes are formed by shaping actin-rich plasma membrane ruffles into large intracellular organelles in a phosphatidylinositol 3-kinase (PI3K)-coordinated manner. Here, we utilize lattice lightsheet microscopy and image visualization methods to map the three-dimensional structure and dynamics of macropinosome formation relative to PI3K activity. We show that multiple ruffling morphologies produce macropinosomes and that the majority form through collisions of adjacent PI3K-rich ruffles. By combining multiple volumetric representations of the plasma membrane structure and PI3K products, we show that PI3K activity begins early throughout the entire ruffle volume and continues to increase until peak activity concentrates at the base of the ruffle after the macropinosome closes. Additionally, areas of the plasma membrane rich in ruffling had increased PI3K activity and produced many macropinosomes of various sizes. Pharmacologic inhibition of PI3K activity had little effect on the rate and morphology of membrane ruffling, demonstrating that early production of 3'-phosphoinositides within ruffles plays a minor role in regulating their morphology. However, 3'-phosphoinositides are critical for the fusogenic activity that seals ruffles into macropinosomes. Taken together, these data indicate that local PI3K activity is amplified in ruffles and serves as a priming mechanism for closure and sealing of ruffles into macropinosomes.


Assuntos
Membrana Celular/metabolismo , Microscopia de Fluorescência/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Pinocitose/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Morfolinas/farmacologia , Fosfatidilinositóis/metabolismo , Pinocitose/efeitos dos fármacos , Células RAW 264.7
11.
Aging (Albany NY) ; 13(13): 16938-16956, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34292877

RESUMO

Macrophage accumulation and nitrosative stress are known mechanisms underlying age-related cardiovascular pathology and functional decline. The cardiac muscle microenvironment is known to change with age, yet the direct effects of these changes have yet to be studied in-depth. The present study sought to better elucidate the role that biochemical and biomechanical alterations in cardiac tissue have in the altered phenotype and functionality of cardiac resident macrophages observed with increasing age. To accomplish this, naïve bone marrow derived macrophages from young mice were seeded onto either functionalized poly-dimethyl-siloxane hydrogels ranging in stiffness from 2kPA to 64kPA or onto tissue culture plastic, both of which were coated with either young or aged solubilized mouse cardiac extracellular matrix (cECM). Both biomechanical and biochemical alterations were found to have a significant effect on macrophage polarization and function. Increased substrate stiffness was found to promote macrophage morphologies associated with pro-inflammatory macrophage activation, increased expression of pro-inflammatory inducible nitric oxide synthase protein with increased nitric oxide secretion, and attenuated arginase activity and protein expression. Additionally, exposure to aged cECM promoted attenuated responsivity to both canonical pro-inflammatory and anti-inflammatory cytokine signaling cues when compared to young cECM treated cells. These results suggest that both biomechanical and biochemical changes in the cardiovascular system play a role in promoting the age-related shift towards pro-inflammatory macrophage populations associated with cardiovascular disease development.


Assuntos
Microambiente Celular/fisiologia , Coração/fisiologia , Macrófagos/fisiologia , Macrófagos/ultraestrutura , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Arginase/metabolismo , Fenômenos Biomecânicos , Células da Medula Óssea , Citocinas/metabolismo , DNA/biossíntese , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Fenótipo , Transdução de Sinais , Técnicas de Cultura de Tecidos
12.
Reprod Domest Anim ; 56(9): 1243-1253, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174122

RESUMO

Retention of foetal membranes (RFM) is a major reproductive disorder in dairy cows. An appropriate immune response is important for a physiological expulsion of the foetal membranes at parturition. Our study aims to provide a deeper insight into characteristics of foetal and maternal macrophages in bovine term placenta. We used transmission electron microscopy (TEM), immunohistochemistry and semi-quantitative RT-PCR to provide a deeper insight into characteristics of foetal and maternal macrophages in bovine term placenta. Semi-quantitative RT-PCR was used to define macrophage polarization in foetal and maternal compartments of normal term placenta. Gene expression of factors involved in M1 polarization [interferon regulatory factor-5 (IRF5), interleukin (IL)-12A, IL12B] and in M2 polarization (IL10) were studied. Ultrastructurally, foetal macrophages showed an irregular shape and large vacuoles, whereas the maternal macrophages were spindle shaped. By immunohistochemistry, macrophages were identified by a strong staining with the lysosomal marker Lysosome-associated membrane glycoprotein 1 (LAMP-1), while myofibroblast in the maternal stroma was positive for alpha-smooth muscle actin. We used the LAMP-1 marker to compare the density of foetal stromal macrophages in placentas of cows with RFM and in controls, but no statistically significant difference was observed. RT-PCR showed a higher expression of all studied genes in the maternal compartment of the placenta and generally a higher expression of M1-, compared to M2-associated genes. Our results indicated that at parturition placental macrophages predominantly show the pro-inflammatory M1 polarization. The higher expression of all the target genes in the maternal compartment may denote that maternal macrophages in bovine term placenta are more frequent than foetal macrophages.


Assuntos
Feto/citologia , Macrófagos/fisiologia , Placenta/citologia , Animais , Bovinos , Feminino , Feto/imunologia , Macrófagos/ultraestrutura , Parto , Placenta/imunologia , Gravidez , Transcriptoma
13.
Cytokine ; 146: 155623, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34144446

RESUMO

Conventional therapy of visceral leishmaniasis (VL) remains challenging with the pitfall of toxicity, drug resistance, and expensive. Hence, urgent need for an alternative approach is essential. In this study, we evaluated the potential of combination therapy with eugenol oleate and miltefosine in Leishmania donovani infected macrophages and in the BALB/c mouse model. The interactions between eugenol oleate and miltefosine were found to be additive against promastigotes and amastigotes with xΣFIC 1.13 and 0.68, respectively. Significantly (p < 0.001) decreased arginase activity, increased nitrite generation, improved pro-inflammatory cytokines, and phosphorylated p38MAPK were observed after combination therapy with eugenol oleate and miltefosine. >80% parasite clearance in splenic and hepatic tissue with concomitant nitrite generation, and anti-VL cytokines productions were observed after orally administered miltefosine (5 mg/kg body weight) and eugenol oleate (15 mg/kg body weight) in L. donovani-infected BALB/c mice. Altogether, this study suggested the possibility of an oral combination of miltefosine with eugenol oleate against visceral leishmaniasis.


Assuntos
Citocinas/metabolismo , Eugenol/uso terapêutico , Imunidade , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Óxido Nítrico/biossíntese , Fosforilcolina/análogos & derivados , Administração Oral , Animais , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Interações Medicamentosas , Quimioterapia Combinada , Eugenol/administração & dosagem , Eugenol/farmacologia , Feminino , Imunidade/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Leishmania donovani/ultraestrutura , Leishmaniose Visceral/parasitologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/parasitologia , Macrófagos/ultraestrutura , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/crescimento & desenvolvimento , Parasitos/imunologia , Parasitos/ultraestrutura , Fosforilação/efeitos dos fármacos , Fosforilcolina/administração & dosagem , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34096975

RESUMO

How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.


Assuntos
Membrana Celular/metabolismo , Forma Celular , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/ultraestrutura , Movimento Celular , Células HEK293 , Células HL-60 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/ultraestrutura , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Pseudópodes/genética , Pseudópodes/ultraestrutura , Transdução de Sinais , Fatores de Tempo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
16.
Cell Tissue Res ; 385(3): 697-711, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33961127

RESUMO

Several types of macrophages have been reported in the intestinal mucosa, but their histological localization remains ambiguous. Here, we obtained detailed information about ultrastructural and phenotypical diversity of macrophage-like cells (MLCs) in the rat ileal mucosa using immunofluorescent analysis and serial block-face scanning electron microscopy (SBF-SEM). The results revealed that the cells immunopositive for CD68, the pan-macrophage marker, included CD163-CD4+, CD163+CD4+, and CD163-CD4- cells in the lamina propria (LP) of the intestinal villus and around the crypt. CD68+CD4+CD163- cells seemed to be preferentially localized in the intestinal villus, whereas CD68+CD163+CD4+ cells were frequently localized around the crypt. SBF-SEM analysis identified three types of MLCs in the ileal mucosa, which were tentatively named types I-III MLC based on aspects of the 3D-ultrastructure, such as the localization, quantity of lysosomes, endoplasmic reticulum, and exoplasm. Type I and II MLCs were localized in the villous LP, while type III MLCs were localized around the crypt, although type II MLCs were a minor population. All three MLC types extended their cellular processes into the epithelium, with type I MLCs showing the greatest abundance of extended processes. Type I MLCs in the upper portion of the intestinal villus showed a higher level of attachment to intraepithelial lymphocytes (IELs) compared to type III MLCs around the crypt. These findings suggest that macrophages of the rat ileal mucosa differed by region along the longitudinal axis of the villous tip-crypt from the perspective of ultrastructure, cellular composition, localization, and interactions with IELs.


Assuntos
Íleo/ultraestrutura , Macrófagos/ultraestrutura , Animais , Ratos , Ratos Wistar
17.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904396

RESUMO

HIV-1 replication commences inside the cone-shaped viral capsid, but timing, localization, and mechanism of uncoating are under debate. We adapted a strategy to visualize individual reverse-transcribed HIV-1 cDNA molecules and their association with viral and cellular proteins using fluorescence and correlative-light-and-electron-microscopy (CLEM). We specifically detected HIV-1 cDNA inside nuclei, but not in the cytoplasm. Nuclear cDNA initially co-localized with a fluorescent integrase fusion (IN-FP) and the viral CA (capsid) protein, but cDNA-punctae separated from IN-FP/CA over time. This phenotype was conserved in primary HIV-1 target cells, with nuclear HIV-1 complexes exhibiting strong CA-signals in all cell types. CLEM revealed cone-shaped HIV-1 capsid-like structures and apparently broken capsid-remnants at the position of IN-FP signals and elongated chromatin-like structures in the position of viral cDNA punctae lacking IN-FP. Our data argue for nuclear uncoating by physical disruption rather than cooperative disassembly of the CA-lattice, followed by physical separation from the pre-integration complex.


When viruses infect human cells, they hijack the cell's machinery to produce the proteins they need to replicate. Retroviruses like HIV-1 do this by entering the nucleus and inserting their genetic information into the genome of the infected cell. This requires HIV-1 to convert its genetic material into DNA, which is then released from the protective shell surrounding it (known as the capsid) via a process called uncoating. The nucleus is enclosed within an envelope containing pores that molecules up to a certain size can pass through. Until recently these pores were thought to be smaller than the viral capsid, which led scientists to believe that the HIV-1 genome must shed this coat before penetrating the nucleus. However, recent studies have found evidence for HIV-1 capsid proteins and capsid structures inside the nucleus of some infected cells. This suggests that the capsid may not be removed before nuclear entry or that it may even play a role in helping the virus get inside the nucleus. To investigate this further, Müller et al. attached fluorescent labels to the newly made DNA of HIV-1 and some viral and cellular proteins. Powerful microscopy tools were then used to monitor the uncoating process in various cells that had been infected with the virus. Müller et al. found large amounts of capsid protein inside the nuclei of all the infected cells studied. During the earlier stages of infection, the capsid proteins were mostly associated with viral DNA and the capsid structure appeared largely intact. At later time points, the capsid structure had been broken down and the viral DNA molecules were gradually separating themselves from these remnants. These findings suggest that the HIV-1 capsid helps the virus get inside the nucleus and may protect its genetic material during conversion into DNA until right before integration into the cell's genome. Further experiments studying this process could lead to new therapeutic approaches that target the capsid as a way to prevent or treat HIV-1.


Assuntos
Núcleo Celular/virologia , Replicação do DNA , DNA Viral/biossíntese , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Internalização do Vírus , Replicação Viral , Desenvelopamento do Vírus , Linfócitos T CD4-Positivos/ultraestrutura , Linfócitos T CD4-Positivos/virologia , Proteínas do Capsídeo/metabolismo , Núcleo Celular/ultraestrutura , DNA Viral/genética , DNA Viral/ultraestrutura , Células HEK293 , Infecções por HIV/patologia , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , HIV-1/ultraestrutura , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/ultraestrutura , Macrófagos/virologia , Microscopia Eletrônica , Microscopia de Fluorescência , Fatores de Tempo
18.
Cells ; 10(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917929

RESUMO

Myelin phagocytosis by macrophages has been an essential feature of demyelinating diseases in the central and peripheral nervous systems, including Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), and multiple sclerosis (MS). The discovery of autoantibodies, including anti-ganglioside GM1 antibodies in the axonal form of GBS, anti-neurofascin 155 and anti-contactin 1 antibodies in typical and distal forms of CIDP, and anti-aquaporin 4 antibodies in neuromyelitis optica, contributed to the understanding of the disease process in a subpopulation of patients conventionally diagnosed with demyelinating diseases. However, patients with these antibodies are now considered to have independent disease entities, including acute motor axonal neuropathy, nodopathy or paranodopathy, and neuromyelitis optica spectrum disorder, because primary lesions in these diseases are distinct from those in conventional demyelinating diseases. Therefore, the mechanisms underlying demyelination caused by macrophages remain unclear. Electron microscopy studies revealed that macrophages destroy myelin as if they are the principal players in the demyelination process. Recent studies suggest that macrophages seem to select specific sites of myelinated fibers, including the nodes of Ranvier, paranodes, and internodes, for the initiation of demyelination in individual cases, indicating that specific components localized to these sites play an important role in the behavior of macrophages that initiate myelin phagocytosis. Along with the search for autoantibodies, the ultrastructural characterization of myelin phagocytosis by macrophages is a crucial step in understanding the pathophysiology of demyelinating diseases and for the future development of targeted therapies.


Assuntos
Autoanticorpos/imunologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Macrófagos/patologia , Animais , Humanos , Macrófagos/ultraestrutura , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura
19.
Cell Rep ; 35(2): 109000, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852860

RESUMO

Chemotaxis and lysosomal function are closely intertwined processes essential for the inflammatory response and clearance of intracellular bacteria. We used the zebrafish model to examine the link between chemotactic signaling and lysosome physiology in macrophages during mycobacterial infection and wound-induced inflammation in vivo. Macrophages from zebrafish larvae carrying a mutation in a chemokine receptor of the Cxcr3 family display upregulated expression of vesicle trafficking and lysosomal genes and possess enlarged lysosomes that enhance intracellular bacterial clearance. This increased microbicidal capacity is phenocopied by inhibiting the lysosomal transcription factor EC, while its overexpression counteracts the protective effect of chemokine receptor mutation. Tracking macrophage migration in zebrafish revealed that lysosomes of chemokine receptor mutants accumulate in the front half of cells, preventing macrophage polarization during chemotaxis and reaching sites of inflammation. Our work shows that chemotactic signaling affects the bactericidal properties and localization during chemotaxis, key aspects of the inflammatory response.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lisossomos/imunologia , Macrófagos/imunologia , Infecções por Mycobacterium/genética , Receptores CXCR3/genética , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Rastreamento de Células , Quimiotaxia/genética , Quimiotaxia/imunologia , Embrião não Mamífero , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Larva/imunologia , Larva/microbiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/imunologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/ultraestrutura , Ativação de Macrófagos , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Mutação , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/microbiologia , Mycobacterium marinum/imunologia , Mycobacterium marinum/patogenicidade , Receptores CXCR3/imunologia , Análise de Sequência de RNA , Transdução de Sinais/genética , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/imunologia
20.
J Mater Chem B ; 9(12): 2909-2917, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33885646

RESUMO

Macrophages are essential in innate immunity and are involved in a variety of biological functions. Due to high plasticity, macrophages are polarized in different phenotypes depending on different microenvironments to perform specific functions. Although many studies have focused on macrophage polarization, few have explored the polarization characteristics of macrophages at the subcellular level, even at nanoscale resolution. Here, we utilize AFM-based infrared spectroscopy (AFM-IR) to investigate the influence of an inducer on the expressed proteins of M1/M2 macrophages (induced by LPS and IL-13, respectively). The results from AFM-IR combined with principal component analysis revealed that the characteristic proteins within M1 contain about 35% antiparallel ß-sheets (due to the high expression of TNF-α), while the proteins within M2 are made up of approximately 38.8% α-helices. The corresponding nanoscale chemical mapping demonstrates a remarkably heterogeneous distribution of expressed proteins inside single macrophages. Beside the biochemical properties, the biomechanical properties of macrophages were found to be softened in response to the polarization process.


Assuntos
Interleucina-13/genética , Lipopolissacarídeos/genética , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/genética , Animais , Fenômenos Biomecânicos , Microambiente Celular , Regulação da Expressão Gênica , Interleucina-13/metabolismo , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Macrófagos/ultraestrutura , Camundongos , Microscopia de Força Atômica , Fenótipo , Análise de Componente Principal , Conformação Proteica , Células RAW 264.7 , Espectrofotometria Infravermelho , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...